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Introduction

• Seismic frequencies obtained from Sun-as-a-star
observations respond to the solar cycle.

• Significant (quasi-periodic) variability in solar activity is
also observed on shorter timescales.

• We have investigated a quasi-biennial signal that is
observed in BiSON, GOLF (see arXiv:1006.4305) and
VIRGO data.
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Take care when comparing data

• Pearson’s ρ = 0.068, significance = 17%

• Spearman’s ρ = 0.477, significance ≪ 1%

• When using log(population): Pearson’s ρ = 0.471,
significance ≪ 1%
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The data

• BiSON, GOLF and VIRGO make Sun-as-a-star
observations:
• They observe low-degree p modes (here used ` ≤ 2).

• We have analysed
• BiSON data from 1986 onwards.
• GOLF and VIRGO data from 1996 onwards.

• We have split the data into short 182.5 d independent
subsets.



Determining the changes to p-mode frequencies

over the solar cycle

• The methods for doing this are well established (Chaplin
et al, 2007, ApJ, 659, 1749).

• Mode frequency estimates extracted from each subset by
fitting a modified Lorentzian model using a standard
likelihood maximization method.

• A reference frequency set was determined by averaging
the frequencies from subsets observed in the minimum
between cycles 22 and 23.

• For each 182.5 d segment we determined a weighted
mean of the individual frequency shifts with respect to
this reference set.
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Examining different frequency ranges

• We considered three frequency bands.
• A “total” frequency range: 1.88-3.71 mHz.
• A “low” frequency range: 1.88-2.77 mHz.
• A “high” frequency range: 2.82-3.71 mHz.

Low-ν band High-ν band

Total-ν band



The observed frequency shifts



The quasi-biennial signal

• BiSON-GOLF correlations are significant to less than 1%.



Periodograms of the frequency shifts
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Is this evidence for a second dynamo?

• One possibility is a dynamo action seated near the
bottom of the rotational shear layer extending 5% below
the surface.

• When the 11-yr cycle is in a strong phase the buoyant
magnetic flux rise from the base of the convection zone.
• This could nudge the magnetic field processed by the

second dynamo into shallow layers.

• When the 11-yr cycle is in a weak phase the second
dynamo would not be buoyant enough to be detected in
modes or other proxies.



Conclusions

• A quasi-biennial signal is visible in all three data sets.

• The signal appears to be
• distinct and separate from
• but nevertheless susceptible to

the main 11-year solar cycle.

• One possible explanation is a second dynamo.

• Thanks for listening!
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Is this evidence for a second dynamo?

• One possibility is a dynamo action seated near the
bottom of the layer extending 5% below the surface.

• This region shows strong rotational shear.

Figure: Courtesy of R. Howe and appearing in Chaplin & Basu,
2008, Sol. Phys, 251, 53.


