Are short-term variations in solar oscillation frequencies the signature of a second dynamo?

Anne-Marie Broomhall¹, Stephen Fletcher², David Salabert³, Sarbani Basu⁴, Bill Chaplin¹, Yvonne Elsworth¹, Rafael García⁵, Antonio Jiménez³, and Roger New²

¹University of Birmingham, ²Sheffield Hallam University, ³Instituto de Astrofísica de Canarias, ⁴Yale University, ⁵Service d'Astrophysique, CEA/Saclay

BiSON The Birmingham Solar Oscillations Network

Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Seismic frequencies obtained from Sun-as-a-star observations respond to the solar cycle.

Introduction

- Seismic frequencies obtained from Sun-as-a-star observations respond to the solar cycle.
- Significant (quasi-periodic) variability in solar activity is also observed on shorter timescales.

Introduction

- Seismic frequencies obtained from Sun-as-a-star observations respond to the solar cycle.
- Significant (quasi-periodic) variability in solar activity is also observed on shorter timescales.
- We have investigated a quasi-biennial signal that is observed in BiSON, GOLF (see arXiv:1006.4305) and VIRGO data.

Take care when comparing data

• Pearson's $\rho = 0.068$, significance = 17%

Take care when comparing data

- Pearson's $\rho = 0.068$, significance = 17%
- Spearman's $\rho = 0.477$, significance $\ll 1\%$

Take care when comparing data

- Pearson's $\rho = 0.068$, significance = 17%
- Spearman's $\rho = 0.477$, significance $\ll 1\%$
- When using log(population): Pearson's $\rho = 0.471$, significance $\ll 1\%$

The data

- BiSON, GOLF and VIRGO make Sun-as-a-star observations:
 - They observe low-degree p modes (here used $\ell \leq 2$).
- We have analysed
 - BiSON data from 1986 onwards.
 - GOLF and VIRGO data from 1996 onwards.
- We have split the data into short 182.5 d independent subsets.

• The methods for doing this are well established (Chaplin et al, 2007, ApJ, 659, 1749).

- The methods for doing this are well established (Chaplin et al, 2007, ApJ, 659, 1749).
- Mode frequency estimates extracted from each subset by fitting a modified Lorentzian model using a standard likelihood maximization method.

- The methods for doing this are well established (Chaplin et al, 2007, ApJ, 659, 1749).
- Mode frequency estimates extracted from each subset by fitting a modified Lorentzian model using a standard likelihood maximization method.
- A reference frequency set was determined by averaging the frequencies from subsets observed in the minimum between cycles 22 and 23.

- The methods for doing this are well established (Chaplin et al, 2007, ApJ, 659, 1749).
- Mode frequency estimates extracted from each subset by fitting a modified Lorentzian model using a standard likelihood maximization method.
- A reference frequency set was determined by averaging the frequencies from subsets observed in the minimum between cycles 22 and 23.
- For each 182.5 d segment we determined a weighted mean of the individual frequency shifts with respect to this reference set.

Examining different frequency ranges

- We considered three frequency bands.
 - A "total" frequency range: 1.88-3.71 mHz.
 - A "low" frequency range: 1.88-2.77 mHz.
 - A "high" frequency range: 2.82-3.71 mHz.

The observed frequency shifts

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

The quasi-biennial signal

• BiSON-GOLF correlations are significant to less than 1%.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Is this evidence for a second dynamo?

- One possibility is a dynamo action seated near the bottom of the rotational shear layer extending 5% below the surface.
- When the 11-yr cycle is in a strong phase the buoyant magnetic flux rise from the base of the convection zone.
 - This could nudge the magnetic field processed by the second dynamo into shallow layers.

• When the 11-yr cycle is in a weak phase the second dynamo would not be buoyant enough to be detected in modes or other proxies.

Conclusions

• A quasi-biennial signal is visible in all three data sets.

- The signal appears to be
 - distinct and separate from
 - but nevertheless susceptible to

the main 11-year solar cycle.

• One possible explanation is a second dynamo.

Conclusions

• A quasi-biennial signal is visible in all three data sets.

- The signal appears to be
 - distinct and separate from
 - but nevertheless susceptible to

the main 11-year solar cycle.

- One possible explanation is a second dynamo.
- Thanks for listening!

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● ● ●

Is this evidence for a second dynamo?

- One possibility is a dynamo action seated near the bottom of the layer extending 5% below the surface.
- This region shows strong rotational shear.

Figure: Courtesy of R. Howe and appearing in Chaplin & Basu, 2008, Sol. Phys, 251, 53.